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Fine-Scale Genetic Mapping Based on Linkage Disequilibrium:
Theory and Applications
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Summary age disequilibrium (LD) recently has emerged as a very
promising tool for fine-scale genetic mapping.

Linkage-disequilibrium mapping (LDM) recently has LD (Lewontin and Kojima 1960), or, more precisely,
been hailed as a powerful statistical method for fine- gametic phase disequilibrium (Crow and Kimura 1970),
scale mapping of disease genes. After reviewing its his- or gametic disequilibrium for short, refers to the nonran-
torical background and methodological development, dom association of alleles at different loci into gametes.
we present a general, mathematical, and conceptually It should be pointed out that the nonrandom association
coherent framework for LDM that incorporates multilo- of alleles also could arise for unlinked loci (Turner 1971;
cus and multiallelic markers and mutational processes Sinnock and Sing 1972; Smouse and Neel 1977; Weir
at the marker and disease loci. With this framework, we and Cockerham 1989). The discovery of LD dates back
address several issues relevant to fine-scale mapping and to 1909, when Weinberg (1909) noted that, in a ran-
propose some efficient computational methods for dom-mating population, the alleles at two loci approach
LDM. We implement various LDM methods that incor- a random association only asymptotically. Shortly there-
porate population growth, recurrent mutation, and after, Jennings (1917) and Robbins (1918) described the
marker mutations, on the basis of a general framework. actual mode of approach to equilibrium frequencies, for
We demonstrate these methods by applying them to the two-locus model. Since then, the population genetics
published data on cystic fibrosis, Huntington disease, of LD has been studied extensively. It is now generally
Friedreich ataxia, and progressive myoclonus epilepsy. understood that many factors, such as selection, admix-
Since the genes responsible for these diseases all have ture, finite population size, migration and mutation,
been cloned, we can evaluate the performance of our coancestry, genetic hitchhiking, and growing population
methods and can compare ours with that of other meth- size, can affect LD (e.g., see Kojima and Schaffer 1967,
ods. Using the proposed methods, we successfully and Hill and Robertson 1968, Karlin 1969, Ohta and Ki-
accurately predicted the locations of genes responsible mura 1969, Weir et al. 1972, Nei and Li 1973, Hill
for these diseases, on the basis of published data only. 1976, Thomson 1977, Hedrick 1980, and Slatkin 1994).

LD mapping (LDM) is based on the following phe-
nomenon (Hästbacka et al. 1992; Jorde 1995; KaplanIntroduction
et al. 1995). When a chromosome carrying a disease

The recent successes of positional cloning have been allele is first introduced into a population as a result of
instrumental in elucidating the genetic mechanisms un- either mutation or migration, the mutant allele is on a
derlying many human diseases. In essence, positional chromosome with a unique set of marker alleles (i.e.,
cloning seeks to identify disease genes on the basis of the haplotype). As the chromosome is propagated in the
their chromosomal locations, in the absence of informa- following generations, the length of the characteristic
tion on the underlying biological defect (Collins 1992). haplotype decreases monotonely and stochastically,
It is now well known that meiotic event–based linkage with each generation. As a result of recombination,
analysis needs huge (sometimes too huge to be realistic) markers in the immediate vicinity of the disease locus

are more likely to remain in the same strand than thosesample sizes for fine-scale mapping of disease genes
farther away. Since the number of recombinations that(Lange et al. 1985; Bodmer 1986; Boehnke 1994). Link-
accumulate through many generations is far greater than
that observed in or inferred from any pedigree-based
linkage study, the mapping resolution achieved throughReceived April 5, 1996; accepted for publication April 1, 1997.
the analysis of LD patterns is much higher than that ofAddress for correspondence and reprints: Dr. Sun-Wei Guo, Insti-

tute of Human Genetics and Department of Epidemiology, School of linkage studies. Thus, it is possible to map genes at a
Public Health, University of Minnesota, 1300 South Second Street, scale finer than 1 cM by the identification of markers
Suite 300, Minneapolis, MN 55454-1015. E-mail: swguo@med that are in strong LD with the disease allele. The so-
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called fineness of the map depends on how many genera-� 1997 by The American Society of Human Genetics. All rights reserved.
0002-9297/97/6006-0031$02.00 tions have passed since the introduction of the mutation.
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LDM can be complicated by many factors. Mutations difficult for practitioners to use. Furthermore, there is an
added problem of sampling variations due to simulation,at marker loci and recurrent mutations at the disease

locus can obscure the LD patterns observed in the neigh- which may demand a large number of replicates.
There are many other unresolved issues in LDM. Isborhood of the disease locus. Other factors, such as

drift, selection, population stratification or admixture, the assumption of exponential expansion of the popula-
tion, as made by Hästbacka et al. (1992) and Kaplan etthe unknown age of the mutant allele, and nonrandom

sampling, also can create difficulties in LDM. al. (1995), or any assumption about population growth,
indispensable for LDM? Under what circumstances canAlthough Fisher (1947) had inferred decades ago the

locus order for the rhesus factor, on the basis of gametic apparently nonassociated marker alleles be lumped into
one group? In the neighborhood of the disease locus,frequencies, the application of fine-scale mapping based

on LD is fairly recent, compared with traditional linkage why do some markers show strong LD whereas others
do not? How can frequencies of alleles associated withanalysis. This is probably because the need for fine-scale

mapping becomes pressing only when coarse-scale map- the disease be lower than those in the normal popula-
tion?ping becomes routine. Furthermore, unlike linkage anal-

ysis, the methodological development of LDM also re- Without an appropriate framework, it is difficult to
answer these questions. It will be difficult to use LDMquires profound knowledge of population genetics.

Bodmer (1986) appears to be the first to have advo- to finely map disease genes, in the face of factors such
as marker mutation, recurrent mutations at the diseasecated the use of LD for fine-scale mapping of a human

population. Lander and Botstein (1986) proposed the locus, and unknown population growth rate. In fact, for
some recently developed methods for LDM, fine-scaleuse of LDM for recent genetic isolates, in lieu of the use

of linkage analysis based on family data. Although some gene mapping for diseases like Huntington disease (HD)
and Friedreich ataxia (FA) still poses a challenge (Kaplanresearchers argued that LD could not be used for fine-

scale mapping (Weir 1989; Hill and Weir 1994), re- et al. 1995) and raises the question of how useful the
LDM methods are (Jorde 1995). Indeed, if Kaplan et al.markable successes in fine-scale mapping based on LD

quickly dispelled this view (Cox 1989; Snell et al. 1989; (1995) are correct in their suspicion that LDM only
works for some simple monogenic diseases, then its util-Theilmann et al. 1989; Hästbacka et al. 1992, 1994;

MacDonald et al. 1992; Huntington’s Disease Collabo- ity would be very limited.
In this paper, we present a general, mathematical, andrative Research Group 1993; A. Chakravarti, personal

communication). conceptually coherent framework for LDM that incorpo-
rates multilocus and multiallelic markers and mutationalThese successes led gene mappers to embrace LDM as

a promising tool for fine-mapping and to develop better processes at the marker and disease loci. Under this frame-
work, the issues raised above can be resolved readily. Thetheoretical methods. For example, Terwilliger (1995) pro-

posed a likelihood method for LDM, on the basis of one framework still assumes a homogeneous population, but
it is not limited to an exponentially growing population.or more marker loci, without assuming the evolutionary

history of the population. In contrast, Kaplan et al. (1995) We show that our framework encompasses several existing
LDM methods as special cases.used a Poisson branching process to model a growing pop-

ulation. By simulating the evolutionary history of the pop- We also propose some efficient computational meth-
ods for LDM. We then demonstrate these methods byulation, they provided estimates for the location of the

disease gene, on the basis of a likelihood function. This applying them to data published prior to cloning of the
genes for cystic fibrosis (CF), HD, FA, and progressivelikelihood approach provides a more reliable estimate of

confidence limits for the recombination fraction than does myoclonus epilepsy (EPM1). The genes for these dis-
eases all have been cloned. Thus, the exact locations ofthe Luria-Delbrück-type model used by Hästbacka et al.

(1992). The method also can evaluate the order of a disease these genes are known, and these data provide a useful
benchmark for the evaluation and comparison of vari-locus and two marker loci. On the basis of a similar model,

Kaplan and Weir (1995) investigated the effects of muta- ous LDM methods, including ours.
We demonstrate that our proposed methods performtion, at either the marker or the disease locus, on the upper

boundaries of the recombination-fraction estimate. Their remarkably well for these data. Thus, we believe that the
utility and scope of LDM, if carried out appropriately, isresults showed that their approach is superior to the

method based on the Luria-Delbrück-type model. wider than previously thought. Finally, we provide some
general considerations for LDM and describe areas forHowever, the approach proposed by Kaplan et al.

(1995) is not without its shortcomings. It is difficult further research.
for simulation methods (SIM) to provide solutions to

The Likelihood Function for LDMstatistical inference problems, such as properties of esti-
mators and sample-size requirements, which are im- Consider a disease locus with two alleles, a disease

allele, d, and a normal allele, n. At the linked markerportant for the practical use of the method. SIM also is
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locus, there are m alleles Mi (i Å 1, . . . , m). The recom- P(t), which contains all the evolutionary history of pid

bination fraction between the two loci is assumed to be prior to t, the likelihood function is actually very difficult
u. Following Kaplan et al. (1995), let kn and kd be sample to evaluate. Kaplan et al. (1995) approached the prob-
sizes from the normal and disease chromosomes, respec- lem by simulation. That is, they simulated the evolution-
tively. Also, let pin and pid (i Å 1, . . . , m) be the marker ary history, given a set of population and genetic param-

eters, and letallele frequencies for allele Mi , for the normal and dis-
ease chromosomes, respectively. Note that �m

iÅ1 pin Å 1
and �m

iÅ1 pid Å 1. For relatively young diseases, marker
E�∏

m

iÅ1

p
kid
id � É 1

J
∑
J

jÅ1

∏
m

iÅ1

p
kid
id

(j) , (4)allele frequencies in normal chromosomes will be as-
sumed to be constant over time, but, within the disease
population, the frequencies will be assumed to change

where pid(j) is the jth simulated realization of randomover time. Therefore, frequencies pid(t) (i Å 1, . . . , m)
variable pid , in J realizations.are time dependent. For notational convenience, we sup-

This is a standard maneuver of approximating an ex-press t. Here, time is measured in generations, with t
pectation by a sample mean, by use of the Monte CarloÅ G being the generation from which the samples are
method (Hammersley and Handscomb 1964). With ataken. For simplicity, we assume that generations are
given population model (e.g., the Poisson branching pro-nonoverlapping. More methods of estimation of the age
cess), the likelihood can be evaluated approximately forof the mutant allele have been developed (S.-W. Guo
any given u.and M. Xiong, unpublished data).

However, there are several problems associatedWith the random union of gametes, replacement from
with this approximation. First, although in principlethe disease population, and random sampling, the condi-
any degree of accuracy of the approximation can betional probability of obtaining the sample, given the
achieved at the cost of more computation time, themarker allele frequencies P(t) Å [p1d

, . . . , pmd
]T, follows

number of replicates needed for a desired accuracy isthe multinomial distribution
hard to determine a priori for a specific problem,
since, in general, it depends on various factors. Sec-
ond, as a result of the Monte Carlo approach, thef [k1d

, . . . , kmd
ÉP(t)] Å kd!

∏m
iÅ1 kid!

∏
m

iÅ1

p
kid
id

, (1)
estimate of u is subject to variations in the Monte
Carlo sampling, in addition to statistical uncertainty.

where kid is the observed number of disease chromo- Similarly, the boundaries computed by the simulation
somes carrying allele Mi (i Å 1, . . . , m). also are subject to variations in the Monte Carlo sam-

Marker-frequency changes between generations are pling. Third, the simulation is subject to several con-
governed by a Wright-Fisher population-genetics model. straints imposed by the data. For example, the simu-
Evolutionary forces, such as random drift, mutation, lated evolutionary history that gives rise to values for
and recombination, will cause marker frequency pid to the total number of disease chromosomes in the popu-
change stochastically. Therefore, frequency pid at any lation has to be close to the estimated value. In addi-
generation t is a random variable. Taking the expecta- tion, there is a nonnegligible chance that one or more
tion of equation (1) over P(t), we obtain the uncondi- alleles at the marker locus could reach fixation or ex-
tional sampling distribution tinction in simulation. This problem may be more

acute for biallelic markers. In reality, of course, we
would not have used the nonpolymorphic marker in

f(k1d
, . . . , kmd

) Å kd!
∏m

iÅ1 kid!
E�∏

m

iÅ1

p
kid
id � (2)

the first place. Thus, the SIM of Kaplan et al. (1995),
which is basically a rejection sampling scheme, may
not be entirely realistic or computationally efficient.(Hill and Weir 1994). In general, E(pid) is a function of

Here we present a computationally economical ap-u. Therefore, f(k1d
, . . . , kmd

) is the likelihood function
proximation, which allows us to consider more complexof u. Ignoring the constant term, we define the likelihood
genetic models and provides more insight into LDfunction l(u) as
between the marker and the disease loci. Let mi(t)
Å E(pid) (i Å 1, . . . , m), m(t) Å [m1(t), . . . , mm01(t)]T,

l(u) Å E�∏
m

iÅ1

p
kid
id � . (3) h[p1d

(t), . . . , pmd
(t)] Å ∏m

iÅ1 p
kid
id

, and the Hessian matrix
of h[p1d

(t), . . . , pmd
(t)] be

To obtain the maximum-likelihood estimate of u, we
need to evaluate the likelihood function l(u). It should

H(t) Å � Ì2h
ÌpidÌpjd

�
P(t)Åm(t)

�
(m01)1(m01)

.be noted that the simple form of the above likelihood
function is deceptive. Since the expectation is taken over
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Noting that tion rates (from Ç1003 to Ç1005) (Weber and Wong
1993), their use may obscure the LD patterns. Thus, it
is appropriate to consider the mutation at the markerE{[P0(t) 0 m(t)]TH(t)[P0(t) 0 m(t)]}

(5) locus, in LDM. We assume that the mutations at micro-Å tr[H(t)D(t)] 0 m(t)TH(t)m(t) , satellite loci occur according to a stepwise mutation
model (SMM) (M. Xiong and S.-W. Guo, unpublished

where D(t) Å E[P0(t)PT
0(t)], P0(t) Å (p1d

, . . . , pm01d
)T, data). The SMM stipulates that the repeat numberand tr denotes the trace of the matrix, we obtain the first-

changes by a few, as a result of mutation (Ohta andorder approximation (FOA) to the likelihood function
Kimura 1973; Shriver et al. 1993; Valdes et al. 1993;
M. Xiong and S.-W. Guo, unpublished data). For ease

l(u) É ∏
m

iÅ1

mi
ki

d (6) of exposition, we consider a one-step SMM in which
there is only one repeat change in the event of a muta-
tion. Extension to a multistep SMM is straightforward

and the second-order approximation to the likelihood but may be more complicated.
function We consider multiple alleles for the microsatellite

markers and assume that allele Mi , indexed according
to the number of repeats, can mutate to the next-largerl(u) É ∏

m

iÅ1

mi
ki

d / 1/2{tr[H(t)D(t)] 0 mT(t)H(t)m(t)} . (7)
allelic state, Mi/1 (i.e., expansion), with probability u,
and to the next-smaller allelic state, Mi01 (i.e., contrac-

When the marker has only two alleles—that is, when tion), with probability v. Let M1 denote the allele with
m Å 2—equation (7) becomes the smallest number of repeats and Mm denote the allele

with the largest number of repeats. We assume that allele
l(u) É m1

k1
d(1 0 m1)k2

d / 1/2H(t)[E(p2
1d

) 0 m2
1] , M1 can mutate only to allele M2 and that allele Mm can

mutate only to allele Mm01 . For diallelic loci, let u be
the forward mutation rate for allele M1 mutating to M2where
and v be the backward mutation rate.

We also assume that disease is due to mutations of aH(t) Å k1d
(k1d

0 1)m1
k1

d
02(1 0 m1)k2

d

normal allele to a disease allele. Backward mutation is0 2k1d
k2d

m1
k1

d
01(1 0 m1)k2

d
01

assumed to be negligible. Let gd be a disease-allele muta-
tion rate and pd be the disease-allele frequency. In gener-/ k2d

(k2d
0 1)m1

k1
d(1 0 m1)k2

d
02 .

ation t, suppose that there are Xi(t) disease chromosomes
carrying marker allele Mi, and XT(t) Å �m

iÅ1 Xi(t) total
We note that the above approximations hold in form disease chromosomes in the population.
regardless of the population-genetics model considered. We consider a two-locus Wright-Fisher model for mu-

tation, recombination, and random genetic drift. The
FOA- and Second-Order Approximation joint evolutionary process of the marker allele frequency

pid can be approximated by use of a diffusion processTo evaluate the approximate likelihood functions (6)
and (7), it is necessary to calculate the first and second (see Appendix A).
moments of the marker frequencies pid (i Å 1, . . . , m). It can be shown (see Appendix B) that the first two

moments of pid satisfy the following ordinary differentialThe marker frequency pid is a random variable subject
equations:to evolutionary forces, such as recombination, mutation,

and migration. In order to compute the first two mo-
ments, we need to specify a population-genetics model

dE[pid(t)]

dt
Å E[gi(t)] , i Å 1, . . . , m ; (8)

for marker frequencies.
For simplicity, we assume that there is no substructure dE[pid(t)pjd(t)]

dt
Å 0E�pid(t)pjd(t)

XT(t) �in the population and that there is random mating in
the population. As Kaplan et al. (1995) pointed out,

/ E[gi(t)pjd(t)] / E[gj(t)pid(t)] , (9)although there may be a selective advantage for carriers,
for practical purposes all carrier individuals can be as- i x j ;
sumed to be selectively equivalent. It is easy to see that

andthis assumption is reasonable for a recessive disease. For
a dominant disease, the assumption of selective equiva- dE[p2

id(t)]

dt
Å E�pid(t)[1 0 pid(t)]

XT(t) � / 2E[gi(t)pid(t)] ,lence also may be reasonable for late-onset (postrepro-
ductive age) diseases.

Since microsatellite markers usually have high muta- i Å 1, . . . , m ,

(10)
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where gi(t) is defined in Appendix A. Note that equation tion of second moments is similar to that of first mo-
ments and is outlined in Appendix C.(8) can be rewritten in a matrix form as follows:

Extensions to Multiple Marker Locidm(t)
dt

Å Am(t) / B , (11)
The above approach can be extended to include multi-

ple marker loci. For ease of exposition, we only discuss
where A is a matrix that depends on u, disease-allele the extension to two-locus haplotype data and the com-
frequency, recurrent-mutation rate, and marker muta- posite likelihood for multilocus LDM based on multilo-
tion rates (see Appendix C) and where B Å (b1 , . . . , cus nonhaplotype data. Extensions to multilocus haplo-
bm)T with b1 Å (1 0 u)ap1n

/ vap2n
, bi Å uapi01n

/ [1 type data are straightforward but more complicated.
0 (u / v)]apin / vapi/1n

, in which i Å 2, . . . , m 0 1,
Two-Locus Haplotype Dataand bm Å uapm01n

/ (1 0 v)apmn
, where a is a function

of u, disease-allele frequency, recurrent-mutation rate, For two-locus haplotype data, there are three possi-
and marker mutation rates (see Appendix C). ble orderings—marker1–disease–marker2, marker1–

Solving equation (11) for m(t) (see Appendix C) yields marker2–disease, and disease–marker1–marker2. We
only discuss the case of marker1–disease–marker2, since
the other two cases can be dealt with in a similar fashion.m(t) Å eAtm(0) / A01(eAt 0 I)B , (12)

We denote pijd as the conditional frequency of haplo-
type Ci–Cj in disease chromosomes. Let uk be the u be-where m(0) Å [p1d

(0), . . . , pmd
(0)]T is a vector of the

tween the disease locus and the kth (k Å 1, 2) marker.initial values for pid , I is an identity matrix, and exp(At)
By use of a similar argument as that used for onedenotes an exponential matrix defined by eAt Å I

marker locus, the evolutionary process of the marker/ ��
kÅ1 (At)k/k!. Equation (12) provides a nice explana-

frequency pijd (i Å 1, . . . , m and j Å 1, . . . , m) also cantion of the dynamics of marker allele distribution in the
be approximated by use of a diffusion process (see Ap-disease population. The expected marker allele frequen-
pendix D). It can be shown that the expectation of thecies at generation t is a function of two components: the
haplotype frequency in the disease population, pijd , satis-first is the initial distribution of marker alleles and its
fiesevolution through cumulative recombination and muta-

tion, and the second involves the evolution of marker
allele frequencies in the normal population, as a function dE(pijd)

dt
Å E[gij(t)] , (14)of time, recombination, and mutation. Thus, as t in-

creases, the expected marker allele frequency in the dis-
ease population approaches that in the normal popula- where gij(t) is defined in Appendix D. If there is no muta-
tion, that is, eventual equilibrium. tion at either the marker locus or the disease locus—

To see this more clearly, we assumed that initially that is, u Å v Å gd Å 0—then equation (14) reduces to
there is complete LD between the marker and the disease
loci—that is, p1d

(0) Å 1, pjd(0) Å 0, j Å 1, . . . , m, and
j x 1—and that there is no mutation at either the marker dE(pijd)

dt
Å 0(u1 / u2)E(pijd) / u1pi.nE(p.jd)

locus or the disease locus (i.e., u Å v Å gd Å 0). Then,
equation (12) can be simplified to E(p1d

) Å e0ut / (1 / u2p.jnE(pi.d), (15)
0 e0ut)p1n

and
i Å 1, . . . , m1 and j Å 1, . . . , m2. ,

E(pjd) Å (1 0 e0ut)pjn ,
(13) where the dot subscript indicates summation over all

values of the corresponding index. Solving the abovej Å 1, . . . , m and j x 1 .
equations for E(pijd) yields

We point out that the result obtained by Cox et al.
(1989) is a special case of equation (13). E(pijd) Å [pijd(0) 0 b1 0 b2 0 pi.np.jn]e

0(u1/u2)t

It is interesting to note that the first moments of pid / b1e0u1t / b2e0u2 / pi.np.jn ,can be computed regardless of how the disease popula-
tion or the normal population changes with time. This

where b1 Å p.jn[pi.d(0) 0 pi.n], b2 Å pi.n[p.jd(0) 0 p.jn], andfeature has an important implication: If we have little
pijd(0) is a set of initial values of the conditional haplo-knowledge of how a population of interest changes with

time, we just may use the FOA to the likelihood of type frequencies.
The second moment of marker frequencies also canequation (3) for fine-mapping purposes. The computa-
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be derived. In particular, if there is no mutation at either where pijd(0) is an initial value of the frequency of allele
the marker locus or the disease locus—that is, u Å v Mi at Cj and where pi,jn is the frequency of the allele Mi

Å gd Å 0—it can be shown that at Cj , in the normal population. Thus, the FOA to l is
given by la Å �k

jÅ1 �m
iÅ1 kid(j)log mi(j).

Similarly, we can determine the second-order approxi-dE(p2
ijd)

dt
Å 0� 1

XT(t)
/ 2u1 / 2u2� E(p2

ijd) mation to l. Because the extension of previous results is
straightforward, we omit details.

It should be pointed out that, strictly speaking, equa-/ 1
XT(t)

E(pijd) / 2u1pi.nE(p.jdpijd) (16)
tion (20) is not a likelihood, because it implicitly as-
sumes that marker frequencies at different loci are inde-/ 2u2p.jnE(pi.dpijd) pendent. For markers that are closely linked, this clearly
is not true. Without knowing the exact dependencies in

and that marker frequencies among the markers, equation (20)
is at least an FOA to the true, yet unknown, likelihood.
For this reason, we will call the likelihood expressed indE(pijdpkld)

dt
Å 0� 1

XT(t)
/ 2u1 / 2u2� E(pijdpkld) equation (20) the ‘‘composite likelihood.’’

/ u1[pi.nE(p.jdpkld) / pk.nE(p.ldpijd)] (17) Some Implications of the Proposed Model

/ u2[p.jnE(pi.dpkld) / p.lnE(pk.dpijd)] . We point out two immediate implications of our pro-
posed model: First, most investigators have concentrated

Multilocus Nonhaplotype Data on the simplest cases, in which there are two types of
Whereas multilocus haplotype data may be difficult to alleles at the marker locus—associated and nonassoci-

obtain in some cases, single-locus data can be relatively ated alleles. This may be reasonable if there is a single
easier to obtain for multiple loci. Analogous to the loca- ancestral mutation in the population. However, if there
tion score in multipoint-linkage analysis (Ott 1991), we are multiple disease mutations or multiple founders car-
also can compute the location score for multipoint rying different mutations, then focusing on the simplest
LDM, using Haldane’s (1919) map function, case no longer may be sufficient. One way to deal with

this situation is to specify initial values for pid(0), where
u Å 1/2(1 0 e02l) . (18) i Å 1, . . . , m. Of course, these values usually are un-

known. However, since all disease alleles are assumed
Suppose that k / 1 markers are located at chromo- to be selectively neutral, the marker frequencies in the

somes that are in accordance with the order C0, C1, current population may be an approximation to the fre-
. . . , Ck . Let li denote the map distance between markers quencies at the time the mutation(s) was introduced.
Ci and Ci01 (i Å 1, . . . , k). Let x denote the distance Suppose that there are r alleles with disease mutations,
between the disease locus and marker C0. Then, from indexed by i1d

, . . . , ird
. Let pP i1d

, . . . , pP ird
be the observed

equation (18), uj , between marker Cj (1 £ j £ k) and marker frequencies within the disease population. Let
the disease locus, is given by p̂0 Å �r

jÅ1 pP ijd . Then, we may simply specify pijd
(0) as

pijd
(0) Å pP ijd /pP 0 , where j Å 1, . . . , r, and, for other alleles,

uj Å 1/2(1 0 e02Éx0� j
iÅ1liÉ) . (19) let their initial values be 0. After specifying initial values

pid(0), we obtain, by solving equation (8) for E(pid),We define the likelihood function Lj of uj as Lj

Å ∏m
iÅ1 p

kid
id

(j), where pi,jd denotes the frequency of allele
E(pid) Å pid(0)e0ut / (1 0 e0ut)pin ,

(22)Mi at Cj , in the disease population, and kid(j) denotes
the observed number of allele Mi at Cj , sampled from the i Å 1, . . . , m .
disease population. Then, the logarithm of the overall
likelihood function L across all markers is defined as That is, the current frequency of the associated allele

consists of two parts: one is the attenuation of the initial
frequency (owing to recombination) and the gradual at-l Å ∑

k

jÅ1

log Lj . (20)
tainment to the frequency of the same allele in the nor-
mal population.

Let mi(j) Å E[pid(j)]. From the previous discussion, when Second, in the disease population, the frequency of
mutations can be ignored, the associated marker allele usually is assumed to be

higher than in the normal population. Both Kaplan et
mi(j) Å pijd(0)e0ujt / (1 0 e0ujt)pi,jn , (21) al. (1995) and Terwilliger (1995) build this assumption
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into their models. Indeed, in most cases this assumption writing equation (13), we have 1 0 E(p1d
) Å (1 0 e0ut)(1

is true. This assumption also is sensible because, if it 0 p1n
) É 1 0 e0ut , provided p1n

É 0. Now, if we replace
was observed to be otherwise, the marker would not be E(pid) by its sample estimate, pP 1d

, obtained from the
identified as in LD with the disease locus. However, in current population, we have 1 0 pP 1d

É 1 0 e0ut, which
many practical situations, it is often the case that, in a was used by Hästbacka et al. (1992) as one way to
region that is supposedly linked to the disease locus, estimate u. Obviously, this estimate is very crude if p1n

some markers show strong LD with the disease locus is nonnegligible. It is somewhat surprising that the same
whereas others do not, despite the fact that they all may formula can be derived without the assumption of expo-
be linked to the disease. One can find such examples in nential population growth.
an FA data set considered by Pandolfo et al. (1990). The method proposed by Terwilliger (1995) also is a

We offer three explanations of why this may happen special case of our FOA to the likelihood. To see this,
sometimes. The first is that the inequality E(p1d

) we define l, using Terwilliger’s notation, to satisfy q1

ú p1n
, where allele 1 is associated with the disease, is Å p1 / l(1 0 p1) and qi Å pi 0 lpi (i x 1), where q1

stochastic in nature. It may be violated in some observed and qi (i.e., p1d
and pid in our notation), are the condi-

samples. The second is that there may be early recombi- tional frequencies of the putative ancestral allele and of
nations between the marker locus and the disease locus other nonancestral alleles, respectively, in the disease
or that recurrent mutations may have occurred in the chromosomes, and where p1 and pi (i x 1) are the popu-
past. If either of these events happens, then it is possible lation frequencies of the progenitor allele and of other
that p1d

(0) õ p1n
, which implies that E(p1d

) Å p1n alleles, respectively, which are approximately equal to
/ e0ut[p1d

(0) 0 p1n
] õ p1n

. p1n
and pin in our notation (assuming that the disease is

A third explanation is that there may be unequal mu- rare). Denoting ri Å pin , Terwilliger (1995) proposed the
tation rates at the marker locus. If this happens, the following likelihood function for u:
frequency of a marker allele associated with the disease-
allele mutations is no longer required to be higher in the L Å ∏

m

jÅ1

qj
kj

d r
kjn
j .

disease population than in the normal population. To
see this, suppose that there are two alleles at the marker

If we let l Å e0ut, thenlocus. For the sake of argument, suppose also that there
is no recurrent mutation and no backward mutation

q1 É p1n
/ e0ut(1 0 p1n

) Å e0ut / (1 0 e0ut)p1n
;(which is equivalent to gd Å v Å 0 but u ú 0). Suppose

further that the mutant disease allele initially is in com-
qi É (1 0 e0ut)pin , i x 1 ,plete LD with M1 . Thus, p1d

(0) Å 1 and p2d
(0) Å 0. In

this situation, equation (8) is reduced to
which is exactly our FOA to the likelihood in equation
(3), in the absence of marker mutation and recurrentdE(p1d

)

dt
Å 0[a / u(1 0 a)]E(p1d

) / (1 0 u)ap1n
. mutation and when there is initially complete LD. Ter-

williger did point out that l should be roughly propor-
tional to (1 0 u)t (Terwilliger 1995, p. 780), whichWhen this equation is solved for E(p1d

),
equals e0ut when u is small, just as we showed above.

Terwilliger (1995) introduced an additional parame-E(p1d
) Å e0[a/u(10a)]t

ter, a, which can be thought of as the proportion of
disease chromosomes that are identical, by descent from/ (1 0 u)a

u / (1 0 u)a
p1n

[1 0 e0[a/u(10a)]t] .
(23)

a common founder chromosome (p. 780). In this case,
l Å a(1 0 u)t É ae0ut. Thus,

It is clear that in this case [(1 0 u)a]/[u / (1
0 u)a]p1n

õ p1n
. Thus, for a t that is large enough, it is q1 É ae0ut / (1 0 ae0ut)p1n

;
(24)possible that E(p1d

) õ p1n
. Intuitively, when marker allele

M1, associated with the disease allele, mutates to marker qi É (1 0 ae0ut)pin , i x 1 .
allele M2, both mutation and recombination will reduce
marker frequency p1d

. Reduction of E(p1d
) owing to re- To incorporate this heterogeneity, we let q1(0) õ 1;

combination will have lower boundary p1n
, but reduction that is, there is an incomplete LD initially. Replacing q1

owing to mutation will not be restricted by p1n
. with E(p1d

) in equation (22), we have

Connections among Existing LDM Methods q1 É e0utq1(0) / (1 0 e0ut)p1n
;

(25)On the basis of the results we have obtained so far,
qi É e0utqi(0) / (1 0 e0ut)pin , i x 1 ,it is possible to relate some existing LDM methods. Re-
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which is somewhat different from equation (24). It also somes is XT(G) Å 2 1 107 and, hence, that the popula-
tion growth rate is l Å 0.078.can be shown that our result is different from equation

(24), even if there are mutations at the marker locus Table 1 summarizes the results. It can be seen that
the results using FOA and SEG are almost identical inand/or the disease locus. We note that equation (25) has

a very nice interpretation. The current pool of disease most cases and are in broad agreement with the true
distance. SCP tends to overestimate the distance,chromosomes comes from two sources: one is descended

from the common ancestral chromosome that under- whereas LDT tends to underestimate. For markers
within 80 kb from the CF locus, however, LDT giveswent no recombination between the marker locus and

the disease locus, and the other is descended from nor- slightly better estimates. Table 2 shows the largest, the
smallest, and the average absolute estimation errors ofmal chromosomes that recombined with the disease

chromosomes. We also note that the likelihood derived the four methods, for 19 markers. It can be seen that,
for this data set, the accuracy of the estimations by FOAby Terwilliger (1995) can be embedded in our composite

likelihood, which is an approximation. Since qi(0) has and by SEG is almost identical and is fairly satisfactory.
The accuracy of the estimation by SCP is compatiblea much clearer meaning in our model and because the

derivation of equation (25) was based on a dynamic with that of LDT but has a higher variation.
The nearly identical results obtained by FOA and SEGpopulation-genetics model, we expect that our method

should perform better. suggest that the assumption of exponential population
growth is not critical to the accuracy of the estimation.
With our proposed framework, the population size onlyNumerical Examples
affects the variance and covariance of allele frequencies

To illustrate our proposed LDM methods, we applied in the diffusion process. Inappropriately specified popu-
them to four genetic diseases, CF, HD, FA, and EPM1, lation size, however, may affect the accuracy of the Tay-
for which the genes all have been cloned. Since the physi- lor expansion. For this example, the FOA is good
cal distance between the disease loci and their sur- enough, and little is gained by the use of the second-
rounding markers now are known, LD data published order approximation. LDT, in general, is not as good as
prior to cloning provides an opportunity to evaluate our two likelihood methods, although it is quite accurate
the performance of our methods and to compare our when the markers are very close (£70 kb) to the CF
methods with that of others. locus. The formulation of Hästbacka et al. (1992) for

We chose the CF data set because it has been well estimation of u involves the marker allele frequency in
analyzed by different researchers and can serve as a the disease population only but does not involve the
yardstick for comparison. The HD and FA data were marker allele frequency in the normal population, and,
chosen because the LD patterns for these two diseases hence, it loses some information. Therefore, the accu-
were quite complicated, and no LDM method has been racy of LDT may not be very satisfactory if the markers
shown to be satisfactory. used are not very close to the disease locus.

Throughout our analysis, we used the empirical con- It also is interesting to compare the support intervals
version rate of 1 cM É 1,000 kb. We used the FOA and obtained by use of the four methods. Following custom-
the second-order approximation, assuming a constant ary methods, we established support intervals for u by
population size (SCP) and assuming an exponentially decreasing the log likelihood by 2 units from its maxi-
growing population (SEG). However, since the FOA mum value. For this example, the proportions of upper-
works remarkably well, we used the SEG and SCP only support boundaries that are smaller than the actual dis-
for the CF example. When applicable, the results were tance are 16%, 10%, 10%, and 78% for FOA, SEG,
compared with those obtained by the SIM of Kaplan et SCP, and LDT, respectively. Since the second-order ap-
al. (1995), the Luria-Delbrück-type method (LDT) used proximation more closely resembles the curvature of the
by Hästbacka et al. (1992, 1994), and the method of true likelihood, it is not surprising that the support
Terwilliger (1995). boundaries obtained by either SEG or SCP are better

than those obtained by FOA. The boundaries obtained
CF by FOA are not as good as those obtained by the second-

order approximation, but they are reasonable. However,The CF gene was cloned in 1989. The most common
mutation, DF508, accounts for ú70% of Caucasian CF the upper boundaries obtained by LDT are somewhat

disappointing. Similar conclusions were reached bycases and was identified in a region flanked by markers
10-1x.6 (HaeIII) and T6/20 (Kerem et al. 1989). Follow- Kaplan et al. (1995) and by Kaplan and Weir (1995).

We also used the multilocus composite likelihood, oning Kaplan et al. (1995), we assumed that the CF muta-
tion occurred Ç200 generations ago (G Å 200). the basis of information on the genetic distance among

23 markers (fig. 1). It can be seen that the compositeFor the SEG model, following Kaplan et al. (1995),
we assumed that the current number of disease chromo- likelihood reached its peak at 0.8 cM (or 800 kb) from
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Table 1

Estimates of Genetic Distance between the CF Locus and Various Marker Loci, by Four LDM Methods

ESTIMATED DISTANCE (kb), BYa

ACTUAL DISTANCE

MARKER (kb) FOA SEG SCP LDT

E6 350 360 [180–740] 350 [110–510] 620 [480–990] 130 [120–150]
E7 340 340 [170–710] 340 [110–490] 580 [460–990] 130 [120–160]
pH131 320 350 [230–530] 350 [190–610] 480 [170–640] 240 [210–280]
W3D1.4 305 370 [240–560] 370 [190–650] 520 [310–690] 240 [210–280]
XV2C 280 220 [100–450] 210 [70–560] 380 [150–650] 110 [90–130]
HincII 260 80 [30–160] 75 [50–180] 140 [50–230] 60 [50–70]
BglII 240 90 [40–180] 90 [60–220] 150 [60–240] 74 [70–90]
KM19 220 100 [50–190] 100 [30–230] 160 [70–240] 80 [70–90]
E2.6 190 90 [30–220] 90 [20–270] 180 [60–300] 60 [50–80]
H2.8A 165 110 [50–210] 110 [70–260] 190 [20–290] 90 [80–100]
E4.1 130 130 [50–270] 120 [30–340] 220 [10–370] 70 [60–80]
J44 95 80 [30–180] 80 [10–230] 150 [50–260] 50 [50–60]
AccI 15 140 [80–240] 140 [60–310] 470 [230–730] 120 [110–140]
HaeIII 5 130 [70–230] 130 [50–310] 210 [50–290] 120 [110–140]
T6/20 15 250 [10–670] 40 [20–100] 110 [50–160] 70 [60–80]
H1.3 25 80 [30–180] 80 [50–120] 140 [50–230] 60 [50–70]
CE1.0 75 290 [50–1,000] 240 [10–490] 140 [30–260] 23 [20–30]
J3.11 660 730 [430–1,660] 740 [340–1,000] 1,310 [320–2,000] 280 [250–330]
J29 760 670 [400–1,260] 670 [330–890] 440 [310–860] 290 [250–340]

a The numbers in brackets are the estimated lower and upper support boundaries. In all calculations, a generation time of 200 and a conversion
rate of 1 cM É 1,000 kb were assumed. Data were taken from the study by Kerem et al. (1989).

marker metD (BanI), as compared with the actual physi- One common opinion holds that LDM can be applied
only to genetic diseases without recurrent mutationscal distance of Ç875 kb. Thus, the error is only Ç75

kb. This agreement suggests that the composite likeli- (e.g., Kaplan et al. 1995). Without recurrent mutations
and with the barring of marker mutations, there is usu-hood gives a more reliable estimation of the disease locus

than the use of individual markers. Terwilliger (1995) ally a predominant ancestral marker allele with a higher
frequency in the disease population. However, this fre-applied his method to the same data set, yielding an

estimate of 770 kb. Thus, in this sense, our method
gives a somewhat more accurate estimate of the CF-gene
location than that of Terwilliger.

We also investigated the impact of the choice of popu-
lation-growth models by using SCP for the estimation
of the location of the disease gene for marker E6. We
found that the model assuming a large, constant popula-
tion size is approximately equivalent to the model as-
suming an exponential growth (data not shown).

Table 2

Errors in the Estimation of the Location of the CF Gene,
by Different LDM Methods

Largest Error Smallest Error Average Error
Method (kb) (kb) (kb)

FOA 240 0 90
Figure 1 Composite log likelihood for estimation of the locationSEG 240 0 90
of the CF locus, on the basis of 19 markers from E6 to J29. MarkerSCP 650 10 170
metD (BanI) is used as a reference point. The true location of the geneLDT 470 45 160
is marked by an ‘‘X.’’
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Table 3 D4S182 is the most likely site of the mutation (MacDon-
ald et al. 1991). Subsequent work by the Huntington

Estimates of Genetic Distance bertween the CF Locus and
Disease Collaborative Research Group (1993) identifiedVarious Marker Loci, by the FOA and SIM Methods,
in this region a large gene, IT15, spanning Ç210 kb,for the Finnish-Population Data
with an expandable unstable trinucleotide repeat, which

ACTUAL ESTIMATED DISTANCE (kb), BYa is responsible for HD.
DISTANCE In the published HD data (MacDonald et al. 1991),

MARKER (kb) FOA SIMb

marker allele frequencies have several patterns. There
seem to be multiple ancestral haplotypes, but no singleXV2C 280 170 [30–510] 300 [?–900]

KM19 220 370 [140–850] 600 [?–1,400] haplotype is predominant. Some markers show strong
Mp6d-9 130 250 [80–630] 400 [?–1,110] allelic associations with HD, but they are interspersed
G2 Ç70 220 [25–950] 400 [?–1,700] with intervening markers that show no association.
J3.11 660 1,080 [540–2,490] . . . [?–ú2,000]

Some markers that are linked to HD do not show any
LD at all.a The numbers in brackets are the estimated lower and upper sup-

port boundaries. Following Kaplan et al. (1995), we assumed the age
b Estimates are from the article by Kaplan and Weir (1995). of the HD mutation to be G Å 200 generations. This

number agrees broadly with our estimate based on
marker data (S.-W. Guo and M. Xiong, unpublished
data). Because HD is a dominant disease and affects Ç1/quency differential and its magnitude are determined by
10,000 people of European descent, the frequency ofthe distance between the marker and the disease locus.
the disease chromosomes is Ç1/20,000.Markers close to the disease locus tend to have a pre-

It is now known that IT15, with an expandable unsta-dominant allele associated with the disease. This may
ble trinucleotide repeat, lies within the region betweennot be true for markers farther away from the disease
D4S180 and D4S182 or is 240 kb, 110 kb, and 250 kblocus.
away from D4S180, D4S95, and D4S182, respectivelyKaplan et al. (1995) estimated, by using SIM, the
(D. A. Tagle, personal communication). Both D4S95/distances between the CF gene and markers XV2C and
AccI and D4S95/MboI show strong LD with the HDKM19. They used data collected from several European
locus, but a nearby marker (TaqI) does not. Assumingpopulations and assumed that 200 generations was the
no mutation at either the marker locus or the diseaseage of the DF508 mutation in all the populations. These
locus, our method placed the HD gene to be Ç260 kbdata sets may not be appropriate for the comparison of
and Ç290kb away from D4S95/MboI and D4S95/AccI,different LDM methods, because it is very likely that
respectively, which are Ç150 kb and Ç180 kb from thethe age of the DF508 mutation is different in different
true location.populations. The likelihood that the same 3-bp deletion

MacDonald et al. (1991) noted that the most commonoccurred more than once in different populations is
haplotypes on HD chromosomes differ in their D4S95/much smaller than the likelihood that the DF508 muta-
TaqI alleles. One factor that causes the lack of a predom-tion was introduced, by gene flow, at different times.
inant allele in the HD chromosomes could be the muta-Kaplan and Weir (1995) selected 5 of 11 markers
tion at marker loci. Such a mutation process would de-(XV2C, KM19, Mp6d-9, G2, and J3.11) in the Finnish
crease the frequency of the progenitor allele and increasepopulation to demonstrate their method. Using the same
the frequency of the other allele, in HD chromosomes.data set, we can compare our method with theirs, assum-
To examine this scenario, we estimated the distance be-ing 100 generations as the age of the CF disease muta-
tween the marker D4S95/TaqI and the HD locus andtion in the Finnish population (table 3). It can be seen
the marker mutation rates. The mutation rate was esti-that, in general, SIM considerably overestimates the dis-
mated to be Ç2 1 1003, and the distance was Ç330 kb,tances. For markers, such as J3.11, that are not very
as compared with the true distance of 110 kb. Whenclose to the CF locus, SIM even failed to give a sensible
this model was extended to D4S180/BamHI, D4S180/estimation of the CF-gene location. We point out that
XmnI, and D4S182/EcoT23, the mutation-rate esti-estimates obtained by our method can be improved con-
mates were within the range of 0–3.0 1 1003 (table 4).siderably if the age of mutation is estimated simultane-
Although marker mutation is a factor, recurrent muta-ously, rather than fixed.
tions at the CAG repeat in the HD locus may be a more

HD plausible explanation for the lack of a predominant al-
lele.In 1983, the gene responsible for HD was mapped to

chromosome 4, by use of linkage analysis (Gusella et We considered a model that incorporated the marker
mutation and the recurrent disease mutations. Three pa-al. 1983). Haplotype analysis using multiallelic markers

indicated that a 500-kb segment between D4S180 and rameters, u, the mutation rates at the marker loci, and
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Table 4

Estimates of Genetic Distance between the HD Locus and Various Marker Loci, by FOA with and without Recurrent Mutations

Mutation Rate Mutation Rate Estimated Distance Error Lower Boundary Upper Boundary
Marker at Marker Locusa at HD Locusb (kb) (kb) (kb) (kb)

D4S180/BamHI 3.0 0 320 80 3 3,390
3.0 50.0 220 20 4 3,290

XmnI 0 0 1,518 Ç1,278 . . . . . .
0 40.0 240 Ç0 4 990

D4S95/MboI 0 0 260 150 130 480
0 3.0 200 90 80 440

Taq1 2.0 0 330 220 40 910
2.0 10.0 220 110 40 990

AccI 0 0 290 180 90 ú10,000
0 1.4 260 150 60 1,030

D4S182/EcoT23 0 0 500 240 260 990
0 12.0 260 10 50 850

NOTE.—The searching-grid sizes of u and the mutation rates at the marker locus and the HD locus were 1005, 1005, and 1009, respectively.
a 1 1003.
b 1 1008.

the mutation rate at the disease locus, were incorpo- in the first X25 intron appears to be the predominant
mutation site (Campuzano et al. 1996).rated, and their corresponding estimates, by use of FOA,

also are listed in table 4. The estimated recurrent-muta- The FA gene, mapped to chromosome 9 in 1988
(Chamberlain et al. 1988), was found to be tightly linkedtion rates vary from marker to marker. At some loci, for

example D4S95/MboI and D4S95/AccI, the estimated to D9S15 and D9S5 (Fujita et al. 1990). In addition, LD
analysis suggested that the FA gene was located within amutation rate gd is small, suggesting that the effect of

mutation on these markers is negligible. It also can be 1-cM region bounded by these two tightly linked mark-
ers. Fujita et al. (1990) estimated that the us betweenseen that, after the incorporation of marker mutations

and recurrent mutations at the disease locus, the accu- the FA gene and D9S15 and between the FA gene and
D9S5 are 0.5 cM and 0 cM, respectively. Using the dataracy of the location estimates improved substantially.

The overall average error of the estimation, by use of in Fujita et al. (1990), Kaplan et al. (1995) applied SIM,
hoping to finely map the gene. However, they got resultsthe model with mutations at both the marker and disease

loci, is 89 kb, which is almost as accurate as our reanaly- no better than those of Fujita et al. (1990).
sis of the CF data.

It may seem a bit strange that the estimate of the
mutation rate at the disease locus varies from marker
to marker. We point out that this is perfectly reasonable,
since all marker data are subject to sampling errors. In
fact, the magnitude of the estimated mutation rates
(1003 for the markers and from Ç1008 to Ç1009 for the
HD locus) seems to be reasonable.

The composite likelihood involving D4S180/BamHI,
D4S95/MboI, and D4S182/EcoT23 peaked at the point
Ç250 kb away from the marker D4S180, as compared
with the actual distance of Ç240 kb (fig. 2). The error
of the estimation is only Ç10 kb!

FA
The cloning of the FA gene, called ‘‘X25,’’ was re-

ported early last year (Campuzano et al. 1996). Five
exons of X25 were found to be spread over 40 kb. There Figure 2 Composite log likelihood for estimation of the location
are two point mutations, TrG in exon 3 and ArG in of the HD locus, across markers D4S180, D4S127, D4S95, and

D4S182. The true location of the gene is marked by an ‘‘X.’’exon 4, but an unstable GAA trinucleotide expansion
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Table 5

Estimates of Genetic Distance and the Lower and Upper Boundaries, between the FA Locus and Two Marker Loci, by Different Methods

Mutation Rate Mutation Rate Estimated Distance Lower Boundary Upper Boundary
Marker at Marker Locus at FA Locus (kb) (kb) (kb)

D9S15 0 0 620 400 1,000
D9S5 2.5 1 1003 4.0 1 1005 480 220 1,220

Since there is no information on the age of the FA 20 kb away from F8101, that is, exactly in an exon of
X25.gene, Kaplan et al. (1995) assumed the age to be G

Å 200. Using the same data, we took a different ap-
proach, estimating simultaneously the age of the FA mu- EPM1
tation and the location. By maximizing the composite The EPM1 gene was mapped to chromosome 21q22.3
likelihood based on D9S15 and D9S5 over the age of by use of linkage analysis and was narrowed further to
the FA mutation and u, we estimated the age to be Ç180 a 0.6-cM region around markers D21S25 and PFKL, by
generations, for the Italian population (Pandolfo et al. use of LD (Lehesjoki et al. 1993). Recently, the EPM1
1990). In the discussion below, we use this figure and gene was cloned and was found to be 2.5 kb in length
assume the frequency of the FA gene to be

√
1/50,000 and Ç30 kb away from marker D21S2040 (Pennacchio

Å .0045. et al. 1996). The EPM1 gene consists of three small
Fujita et al. (1990) found that D9S15, a six-allele exons. The first base-pair mutation (GrC) and the sec-

microsatellite marker, is in strong LD with the FA locus. ond (GrC) were found at the last nucleotide of intron
Kaplan et al. (1995) did not report their estimate of u 1 and at amino acid position 68 of the cystatin B gene,
for this marker but only reported an upper boundary respectively.
for u of Ç2 cM, which they admitted was too large to We assumed, as did Lehesjoki et al. (1993), the age
be useful. Here we assume a six-allele model with no of the disease mutation to be 100 generations and esti-
mutation at the marker loci and consider the allele A2, mated that EPM1 is Ç350 kb away from marker
the most common in the disease chromosomes, as the D21S25 (support interval 150 kb–750 kb; see table 6).
putative ancestral allele. With this model, the distance The true location of the EPM1 gene now is known to
between D9S15 and the FA gene is estimated to be 620 be Ç393 kb away from D21S25, which is remarkably
kb (table 5), which is Ç50 kb away from the true loca- close to our prediction.
tion (Campuzano et al. 1996). Note also that our upper On the basis of the marker-distance information that
boundary is only half that of Kaplan et al. (1995). recently has become available (Stone et al. 1996), we

D9S5 is a bit problematic because no single allele has applied our methods to data for markers PFKL and
a predominant frequency in the FA population. We sus- D21S25, published in Lehesjoki et al. (1993). We found
pect that there may have been an early recombination that the age of the disease mutation is approximately tO
between the marker and the disease locus, after the dis- Å 74 generations and that the EPM1 gene is 610 kb
ease mutation occurred or that there may have been away from PFKL. The error of our estimate is only
recurrent mutations. Therefore, we incorporated muta- Ç30 kb.
tions at both loci into our model and designated the Recently, Virtaneva et al. (1996) generated new data
allele with the highest frequency in the disease sample at D21S1885, D21S2040, D21S1259, D21S1912, and
as the common ancestral allele. The resultant estimation PFKL. Using this data set, we calculated the composite
precisely placed the FA gene in the first X25 intron, likelihood for these markers (fig. 3). Again, the age of
where there is an unstable GAA trinucleotide expansion mutation is Ç70 generations, and the distance between
(table 5). These estimations suggest the order of D9S15– D21S1885 and the EPM1 locus is estimated to be 370
D9S5–FA, which agrees with the actual locations of kb, which is only 40 kb away from the true location
these markers and the FA gene. (fig. 3).

We also used the two-locus composite likelihood with The results of the likelihood-based multipoint LD
the fixed mutation rates 0, 2.5 1 1003, and 4 1 1005 at analysis, according to Terwilliger (1995), placed the dis-
D9S15, D9S5, and the FA locus, respectively, for which ease gene in the region between D21S1259 and
the mutation rates were estimated from previous analy- D21S1912 and estimated the EPM1 gene to be 80 kb
ses (table 5). This yielded the distance of 690 kb between away from D21S1259 (Virtaneva et al. 1996). The error

(220 kb) of their estimate is almost six times higher thanD9S15 and the FA gene, which again placed the FA gene
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Table 6

Estimates of Genetic Distance between the EPM1 Locus and Two Marker Loci, by Different Methods

ESTIMATED DISTANCE (kb), BYa

MARKER FOA SIMb LDT Modified LDT

PFKL 360 [210–570] 500 [?–100] 280 [230–360] 360 [?–490]
D21S25 350 [150–750] 600 [?–1,300] 140 [110–180] 350 [?–480]

a The numbers in brackets are the estimated lower and upper support boundaries.
b Data and estimates from tables 2 and 3 in the article by Kaplan and Weir (1995).

ours. This demonstrates again that our method provides moments of the marker allele frequencies in the disease-
causing chromosomes, we have presented a general,a more accurate estimate than that of Terwilliger (1995).
mathematical, and conceptually coherent framework for
LDM, which incorporates multilocus and multiallelicDiscussion
markers and mutational processes, at both the marker

To make efficient inferences in LDM, it is necessary to
and disease loci. This framework provides many new

base the inference on the maximum-likelihood principle,
insights into the patterns of LD and the mathematical

which requires an explicit expression for the expectation
links between seemingly unrelated methods for LDM.

of the conditional likelihood function, that is, the uncon-
The methods for LDM can be classified roughly into

ditional likelihood. The unconditional likelihood is de-
two groups. One is simple disequilibrium mapping

ceptively simple in form, but it can be very difficult to
(Weir 1989; Jorde et al. 1994; Devlin and Risch 1995),

evaluate, even in the single-marker case. In contrast to
which is based solely on the magnitude of the disequilib-

SIM, proposed by Kaplan et al. (1995), we have approx-
rium measures. The other group is what we called

imated the likelihood using the Taylor expansion. The
‘‘model based,’’ which is represented by the work of

approximations require the computation of the first and
Hästbacka et al. (1992), Hill and Weir (1994), Kaplan

second moments of the marker allele frequency in the
et al. (1995), Kaplan and Weir (1995), Risch et al.

disease population. The first moments of the allele fre-
(1995), and Terwilliger (1995). The latter group can be

quencies can be derived regardless of the population
distinguished further, depending on whether one im-

model considered. The derivation of the second mo-
poses a population model (e.g., an exponentially grow-

ments, however, does require the specification of a popu-
ing population).

lation model. Through derivation of the first and second
Like most population-genetics models of LD, Hill and

Weir’s (1994) model assumes a constant effective popu-
lation size Ne. With that model, u unfortunately is con-
founded with an unknown Ne. This makes it difficult
to estimate u. Moreover, the model has the problem that
once the allele frequencies of disease-causing chromo-
somes reach the state of equilibrium, all information
about u, generated by LD, will be lost. The major contri-
bution of Hästbacka et al. (1992) was to consider the
nonequilibrium (i.e., a rapid-growing population) situa-
tion of a so-called young and isolated population. In
this kind of model, all information on recombination
events accumulated throughout the entire history of the
population is manifested by LD. As a result, u is con-
founded only with the age of the disease mutation,
which sometimes can be estimated approximately
through other sources. In fact, when multilocus data are
used and interlocus genetic distances are known, the
composite likelihood can be used to estimate simultane-Figure 3 Composite log likelihood for estimation of the location
ously the age of the mutation and the location of theof the EPM1 locus, on the basis of markers D21S1885, D21S2040,
disease locus.D21S1259, D21S1912, and PFKL. The true location of the gene is

marked by an ‘‘X.’’ Kaplan et al. (1995) recognized that one does not
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need to model the evolutionary history of the whole One potential source of inaccuracy in SIM is the simu-
lation itself. By necessity, SIM generates a prespecifiedpopulation. Instead, one can model only the dynamics

of the disease-causing chromosomes. Since the disease number of replicates, according to some parameters and
to population-dynamics models. Because of their Monteof interest is usually rare, the proportion of disease-

causing chromosomes in the entire population is typi- Carlo nature, sampling variations are introduced into
the parameter estimate, in addition to noise in the datacally very small. Once information on the marker allele

frequencies of the normal chromosomes is gathered, all and to intrinsic statistical variations in the estimation.
For HD and FA, for which no single marker allele hasinformation on u is in the disease-causing chromosomes.

However, this is true only when the disease under study a predominantly high frequency in disease chromo-
somes, SIM and other methods do not work at all. Itis rare.

Does this mean that we always have to know or to should be noted that the analysis of HD and FA data
was based on data collected from large continental pop-assume the growth rate of a population, for LDM? This

question is important, since determination of the growth ulations whose histories are not well understood. It is
likely that there are multiple disease-causing mutationsrate for a particular population for the last 20 or more

generations can be difficult, despite the fact that most on different alleles. For this class of so-called multimu-
tant diseases, a single allele with a predominantly highhuman populations have expanded considerably in the

last century. Our results challenge this notion, on two frequency among disease chromosomes may not exist.
Mutations at marker loci also can cause the same prob-grounds. First, the results derived with the assumption

of an exponentially growing population, obtained by lem. To deal with these possibilities, we incorporated
mutations at both marker and disease loci. For the sameHästbacka et al. (1992) and Lehesjoki et al. (1993),

also can be derived with our framework without any data sets used by Kaplan et al. (1995), our method
mapped the HD gene with remarkable accuracy: theassumptions about population growth. In fact, the equa-

tions for the estimation of u, proposed by the two average error of the estimation was only Ç89 kb. On
the basis of limited published data, we predicted, priorgroups, were derived without respect to growth rate.

Second, our numerical results suggest that FOA likeli- to cloning, that the FA gene is Ç690 kb away from
D9S15, which is exactly the location of the FA gene.hood function (6) performs remarkably well. As we

pointed out before, the FOA is valid regardless of which We are convinced that, given the right population and
data, it is technically feasible to fine-map disease genespopulation model is used.

The framework that we proposed also has broadened by use of LDM.
On the basis of our experiences with LDM, usingthe scope of LDM. Several methods assume that the

frequency of the associated allele in disease-causing published data, we offer some general considerations
for the fine-scale mapping of disease genes. First andchromosomes always should be higher than that in the

normal chromosomes. Terwilliger’s (1995) method im- foremost, it is important to understand the disease and
the population. Is the disease rare in the population?plicitly assumes that this is the case (i.e., l £ 0). The

assumption that Pexcess § 0, made by Lehesjoki et al. This question should be examined carefully before an
LDM analysis is launched. If the disease is heteroge-(1993), also explicitly assumes so. Kaplan et al. (1995)

noted that, in the case of FA and HD, some markers neous, it may be a good idea to select one specific sub-
type of the disease, for LDM. It also may be ideal toshow LD with the disease locus, but for these markers,

the allele frequencies in the samples of disease-causing have a genetically isolated population for LDM, with
the additional requirements that the disease mutationchromosomes are lower than those in the normal sam-

ple. Kaplan et al. (1995) and Kaplan and Weir (1995) (not necessarily the population) is old enough for recom-
bination to narrow the region of disequilibrium but notthought that these observations were not consistent with

their evolutionary theory. Assuming that sampling error so old as either to reach linkage equilibrium or to accu-
mulate many new mutations. Second, it is useful tocan be ignored, however, we know from the above dis-

cussions that this phenomenon can be accommodated know the locations of the markers to be saturated, in
the region of interest. If we know the interlocus distanceswithin our model, owing either to random drift (since

the inequality is stochastic in nature) or to mutations at among the markers, we can use the composite likelihood
and can extract information on the disease locus, fromthe marker locus.

Kaplan et al. (1995), Kaplan and Weir (1995), and multiple markers. Third, it also is worthwhile to place
the markers carefully. For example, assigning markerswe found that the upper boundaries estimated by the

LDT method were too restrictive and missed the true approximately equally to both sides of the disease locus
would allow more accurate localization of the diseaselocation of the disease locus in almost 80% of cases.

This clearly is unacceptable. We also found, however, locus. This can be done, for example, by the even place-
ment of markers in the region of interest. Fourth, itthat support intervals estimated by SIM were too conser-

vative to be useful. may be efficient to saturate the region of interest with
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markers, in two steps. At the first step, the region would where pin is the frequency of the allele Mi in the normal
be saturated with markers spaced at Ç500 kb apart. population. It is easy to see that XT(t / 1) Å XT(t)
Once a narrower region is identified, the region would / gd2NG(1 / r)0(G0t). Recall that pid(t) is the frequency
be saturated with markers spaced at Ç60–100 kb. Ow- of the marker allele Mi in the disease population. Let
ing to the inherent limitations, a map that is too dense p*id(t / 1) be the frequency of the allele Mi in the disease
may be a waste. population, after recombination and mutation, during

Throughout this article, we have used a one-step the time period (t, t / 1). Furthermore, let pd be the
SMM to describe the mutation process at microsatellite disease-allele frequency, that is, pd Å XT(t)/2N(t), where
loci. Although the model is simple and seems to work N(t) is the size of the population in generation t. Assume
well, it may not work well in all cases. If this is true, a that pd is constant over time. Then p*id(t / 1) is given
multistep SMM should be used. by

Although allelic heterogeneity can be handled in LDM
by the introduction of recurrent mutations, locus hetero-

p*id(t / 1) Å (1 0 u)Xi(t) / [uXT(t) / gd2NG(1 / r)0(G0t)]pin

XT(t) / gd2NG(1 / r)0(G0t)geneity may be more difficult to deal with. Also, the
assumption of the constant allele frequency in the nor-
mal population may not hold when the mutation rate É (1 0 u)pid(t)

1

1 / gd

pd

/ apin

at the marker is very high and the age of the disease
mutation is old. Population substructure, incomplete
penetrance, phenocopies, and nonrarity of the disease É (1 0 a)pid(t) / apin , (A1)
also can pose problems. Thus, there is room for im-
provement for LDM methodology. where a Å u / gd /pd.

Under the one-step SMM, marker allele Mi can mutate
to the next-larger allelic state Mi/1 , with probability u,Acknowledgments
and to the next-smaller allelic state Mi01 , with probabil-
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pi(t) Å [1 0 (u / v)]p*id(t / 1)

(A2)
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presentation of this paper.

/ up*i01d
(t / 1) / vp*i/1d

(t / 1)

Appendix A
(Ohta and Kimura 1973; M. Xiong and S.-W. Guo,

Let NG be the current (t Å G) size of the normal unpublished data).
population, with an exponential growth rate r. The It follows from equations (A1) and (A2) that
amount of mutation at the disease locus in each genera-

gi(t) Å E[pid(t / 1) 0 pid(t)ÉP(t)]tion depends on the gd as well as on NG.
There are three ways to obtain the disease chromo- É 0[a / (u / v)(1 0 a)]pidsomes carrying marker allele Mi, in generation t / 1:

/ u(1 0 a)pi01d
/ v(1 0 a)pi/1d

/ uapi01n1. The disease chromosomes carrying Mi in generation
t do not recombine with other chromosomes during / [1 0 (u / v)]apin / vapi/1n

,
the time period (t, t / 1).

i Å 2, . . . , m 0 1 ,2. Disease chromosomes recombine with the normal
chromosomes carrying the marker allele Mi . g1(t) Å E[p1d

(t / 1) 0 p1d
(t)ÉP(t)]

3. Mutations occur on normal chromosomes carrying
the marker allele Mi . É 0[a / u(1 0 a)]p1d

/ v(1 0 a)p2d

Given Xi(t), the number of disease chromosomes car- / (1 0 u)ap1n
/ vap2n

,
rying marker allele Mi in generation t, if mutation at the

gm(t) Å E[pmd
(t / 1) 0 pmd

(t)ÉP(t)]marker locus is ignored, then

É 0[a / v(1 0 a)]pmd
/ u(1 0 a)pm01dXi(t / 1) Å (1 0 u)Xi(t)

/ [uXT(t) / gd2NG(1 / r)0(G0t)]pin , / (1 0 v)apmn
/ uapm01n

,
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and amm Å 0[a / v(1 0 a)]

ajm Å 0; j Å 1, . . . , m 0 2
wij(t) Å E{[pid(t / 1) 0 pid(t)][pjd(t / 1) 0 pjd(t)]ÉP(t)}

It is easy to see that
É pid(t)[dij 0 pjd(t)]

XT(t)
.

de0At

dt
Å 0Ae0At

Therefore, the joint evolutionary process pid(t) (i Å 1,
. . . , m) at the disease and marker loci can be approxi- and that
mated by a diffusion process with a generator given by

�
t

0
e0Asds Å tI / ∑

�

kÅ1

(0A)ktk/1

(k / 1)!L Å 1
2

∑
m

iÅ1

∑
m

jÅ1

Pid(t)[dij 0 pjd(t)]

XT(t)
Ì2

ÌpidÌpjd

/ ∑
m

iÅ1

gi(t)
Ì

Ìpid Å 0A01[e0At 0 I ] .
(Revuz and Yor 1994).

Thus, we haveAppendix B

Let f be a function of pid (i Å 1, . . . , m). By the Hille- d[e0Atm(t)]
dt

Å e0AtB . (C1)Yosida theorem (Ethier and Kurtz 1986), we have dE(f )/
dt Å E[L(f )], where L is the generator of the diffusion
process. In particular, if f Å pid(t), then Ì2f/ÌpidÌpjd Å 0

When both sides of equation (C1) are integrated,
and Ìf/Ìpid Å 1. Thus, dE[pid(t)]/dt Å E[gi(t)], where
i Å 1, . . . , m. Similarly, if f Å pid(t)pjd(t), then

e0Atm(t) 0 m(0) Å 0A01(e0At 0 I)B . (C2)Ì2f/ÌpidÌpjd Å 1 and Ìf/Ìpid Å pjd , and, hence,

Thus, it follows from equation (C2) that m(t) Å eAtm(0)
/ A01(eAt 0 I)B.dE[pid(t)pjd(t)]

dt
Å 0E�pid(t)pjd(t)

XT(t) � To apply the second-order approximation, it is neces-
sary to compute the second moments of the marker allele
frequencies, which depends on (1) the recurrent-muta-/ E[gi(t)pjd(t)] / E[gj(t)pid(t)] .
tion rate gd at the disease locus, (2) the mutation process
at the marker locus, and (3) the population-growthClearly, Ì2p2

id /Ìp2
id Å 2 and Ìp2

id /Ìpid Å 2pid . By the same
model. There are an infinite number of choices for all

argument, we obtain
of these variables. Here, we only consider some simple,
yet reasonably realistic, models.

For ease of exposition, we consider a two-alleledE[p2
id(t)]

dt
Å E�pid(t)(1 0 pid(t)

XT(t) � / 2E[gi(t)pid(t)] .
marker. Let r be the rate of population expansion. Then,
XT(t) Å 2Nder(t0G) (0 £ t £ G). Equation (10) can be
rewritten as

Appendix C

The matrix A has the following elements: dE(p2
1d

)

dt
Å 0�e0r(t0G)

2Nd

/ a1�E(p2
1d

)
(C3)

a11 Å 0[a / u(1 0 a)]
/ �e0r(t0G)

2Nd

/ a2�E(p1d
) ,a12 Å v(1 0 a)

a1j Å 0; j Å 3, . . . , m
where a1 Å 2[a / u(1 0 a) / v(1 0 a)] and a2 Å 2v(1

ai,i01 Å u(1 0 a) 0 a) / 2(1 0 u)ap1n
/ 2vap2n

. When E(p1d
) is substi-

tuted into equation (C3),aii Å 0[a / (u / v)(1 0 a)]

ai,i/1 Å v(1 0 a); i Å 2, . . . , m E(p2
1d

) Å p1d
(0)e0a1t/(erG/2Ndr) (e0rt01)

(C4)ai,j Å 0; j x i 0 1, i, i / 1
/ e0a1t/(e0r(t0G)/2Ndr) �

t

0
h(s)ds ,

am01,m Å u(1 0 a)
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where / u�(1 0 a)pij01d
/ u1pi.np.j01d

/ u2p.j01n
pi.d /

gd

pd

pi,j01n�
h(s) Å

p1d
(0) / b

l

2Nd

e(a1/l0r)s/rG0(1/2Ndr)e0r(s0G)

/ v�(1 0 a)pi,j/1d
/ u1pi.np.j/1d

0 b
2lNd

e(a10r)s/rG0(1/2Ndr)e0r(s0G)

/ u2p.j/1n
pi.d /

gd

pd

pij/1n� ,/ a2�p1d
(0) / b

l� e(a1/l)s0(1/2Ndr)e0r(s0G)
(C5)

and
0 a2b

l
ea1s0(1/2Ndr)e0r(s0G)

a Å u1 / u2 / gd

pd

,
(D2)

l Å 0[a / u(1 0 a) / v(1 0 a)]

b Å (1 0 u)ap1n
/ vap2n

/ v(1 0 a) and, for i Å 1, m1, j Å 1, and m2 , where mi is the number
of alleles at locus i, we need to consider corresponding
boundaries for u and v. Using the Hille-Yosida theorem,

As long as we know the population growth rate r, the we obtain a system of differential equations with regard
expectations of the second moments of pid can be ex- to the expectations of marker frequencies in a disease
pressed as a function of u, v, u, t, and gd . The case of population:
multiallelic markers can be considered similarly if an
SMM is assumed. dE(pijd)

dt
Å E[gij(t)] (D3)

Appendix D
From equation (14) it follows that

L Å 1
2

∑
i

∑
j

∑
k

∑
l

aijkl(t)
Ì2

ÌpijdÌpkld (D1) E(pi.d) Å [pi.d(0) 0 pi.n]e
0u1t / pi.n

(D4)
E(p.jd) Å [p.jd(0) 0 p.jn]e

0u2t / p.jn ./ ∑
i

∑
j

gij
Ì

Ìpijd

,

Substituting E(pi.d) and E(p.jd) from equation set (D4)
into equation (15), we obtainwhere

dE(pijd)

dt
Å lE(pijd) / a1e0u1t

aijkl(t) Å
pijd(t)(dikdjl 0 pkld)

XT(t)
,

/ a2e0u2t / (u1 / u2)pi.np.jn ,
gij(t) Å 0apijd 0 (u / v)(1 0 a)pijd

where l Å 0(u1 / u2), a1 Å u2p.jn[pi.d(0) 0 pi.n], and a2/ [1 0 (u / v)]�u1pi.np.jd / u2p.jnpi.d /
gd

pd

pijn� Å u1pi.n[p.jd(0) 0 p.jn]. Thus,

/ u�(1 0 a)pi01,jd / u1pi01.n
p.jd d[e0ltE(pijd)]

dt
Å0le0ltE(pijd) / e0lt

dE(pijd)

dt

Å0le0lt E(pijd) / e0lt [lE(pijd)/ u2p.jnpi01.d
/ gd

pd

pi01,jn�
/ a1e0u1t / a2e0u2t / (u1 / u2)pi.np.jn] (D5)

/ v�(1 0 a)pi/1,jd / u1pi/1.n
p.jd Å a1e0(l/u1)t / a2e0(l/u2)t

/ (u1 / u2)pi.np.jne
0lt .

/ u2p.jnpi/1.d
/ gd

pd

pi/1,jn� When both sides of equation (D5) are integrated,
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Additional polymorphisms at marker loci D9S5 and D9S15
e0ltE(pijd) 0 pijd (0) Å 0 a1

l / u1
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l / u2
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